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A DENDRITE METHOD FOR CLUSTER ANALYSIS 

T. Caliliski and J. Harabasz 

Academy of Agriculture, Poznan, Poland 

Key Words & Phrases: numerical taxonomy; c lu s t e r  analysis; minimum variance 
(WGSSI cr i ter ion  for optima2 grouping; approximate grouping procedure; 
shortest  dendrite = minimum spanning tree;  variance ra t i o  cr i ter ion  
for be s t  number of groups. 

ABSTRACT 

A method f o r  identifying c lu s t e r s  of points i n  a m u l t i -  

dimensional Euclidean space is described and its application 

t o  taxonomy considered. It reconciles,  i n  a  sense, two d i f -  

fe ren t  approaches t o  the invest igat ion of the s p a t i a l  re la-  

t ionships between the points, viz. ,  the  agglomerative and the 

divis ive methods. A graph, the shor tes t  dendrite of Florek e t  

a l .  ( l 9 j l a ) ,  is constructed on a nearest  neighbour basis ana 

then divided in to  c lu s t e r s  by applying the c r i t e r ion  of mini- 

mum within-cluster sum of squares. This procedure ensures an 

effect ive reduction of the number of possible s p l i t s .  The 

method may be applied t o  a  dichotomous divis ion,  b u t  is per- 

f ec t l y  sui table  a l s o  for  a  global divis ion i n t o  any number of 

c lusters .  An informal indicator  of the "best number" of clus- 

t e r s  i s  suggested. It i s  a  "variance r a t i o  c r i te r ion"  giving 

some insight  i n to  the s t ructure  of the pointa. The method is 
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i l l u s t r a t e d  by three examples, one of which is  original.  The 

r e s u l t s  obtained bg the dendrite method are compared with 
those obtained by using the agglomerative method of 'Nard 

(1963) and the divis ive method of Edwards and Cavalli-Sforza 

(1965). 

1. INTRODUCTION 

Various methods have been proposed fo r  ident i fying 

groups of points i n  multidimensional spaces. The demand for  

such methods comes specially from systematists engaged i n  

c lass i f ica tory  or taxonomical problems, i n  which each of the 

multivariate individuals under study mag be conaidered a s  a 

point i n  a multidimensional space with an assigned distance 

measure. Thus c lass i f ica t ion  of individuals consis ts  i n  grou- 

ping of points. These groups are  often cal led c lus te rs ,  

though no sa t i s fac tory  def ini t ion of t h i s  concept exis ts .  Its 

in tu i t i ve  meaning is  "that points within a c lus te r  are  close 

together ,  while the c lus te rs  themselves are  f a r  apart" (Rao, 

1964, p. 351). The lack of a precise def in i t ion  of such clus- 

t e r s  a s  well a s  the computational d i f f i c u l t i e s  i n  finding ab- 

solute  optimal groupings give r i s e  t o  many d i f fe ren t  approa- 

ches t o  c lus te r  analgsis  and so t o  the application of various 

techniques. 

Two methods of c lus te r  analysis  may d i f f e r  i n  the choice 

of a measure of homogeneity within c lus te rs  and of heteroge- 

nei ty  between c lus te rs ,  or i n  the procedure of applying t h i s  

measure in grouping points in to  c lus te rs ,  or i n  both, A func- 

t i o n a l  re la t ion  chosen a s  a measure of the within-cluster ho- 

mogeneity (or the between-cluster heterogeneity) usually re- 
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f l e c t s  the r e l a t i ve  des i rab i l i ty  of grouping and depends on 

the nature of the problem. This objective funct ion,as  it is 

sometimes ca l led  (c f .  Ward, 1963), does not,  however, deter- 

mine a  method of c lu s t e r  analysis.  This usually depends a l so  

on the algorithm by which the c lu s t e r s  are  constructed t o  op- 

timize the objective function,Since c lus te r  analysis  is often 

applied i n  large-scale s tudies ,  the algorithm must not only 

be consistent with the c r i t e r ion  re f lec ted  by the objective 

function but a l so  feasible  i n  prac t ica l  application t o  exten- 

sive data. Often a  precise optimal solut ion f o r  a  well de- 

f ined objective function is  not possible,  f o r  the amount of 

computation involved becomes enormously large even with a  mo- 

derate number of individuals. I n  such circumstances a  non- 

-exhaustive approximate procedure allowing f o r  a reduction i n  

computations m u s t  be devised. This may be done i n  d i f fe ren t  

ways and so various techniques a re  suggested. 

A famil iar  objective function applicable i n  c lu s t e r  ana- 

l y s i s  i s  the within-group ( c lu s t e r )  sum of squares (WGSS). It 

seems natural  t o  regard the optimal grouping of n  points in to  

k c lu s t e r s  a s  t ha t  f o r  which WGSS is minimized. This c r i t e r i -  

on r e f l e c t s  a  desire  t o  f ind  some minimum variance spherical 

c lusters .  

However a t t r a c t i v e ,  the appl icat ion of WGSS a s  an objec- 

t i v e  function demands the examination of a l l  possible group- 

ings of n  points i n to  k c lu s t e r s  and thus becomes impractica- 

ble even fo r  small values of n. For example, the grouping of 

10 points into 5 c lus t e r s  requires 42 525 poss ib i l i t i e s  t o  be 

examined, and t h i s  number increases ra ther  rapidly with the 
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r i s e  i n  n (cf.  For t ie r  and Solomon, 1966, section I).  There- 

fore ,  it is important t o  have a strategy tha t  would reduce 

e f f ic ien t ly  the number of computations. Among various propo- 

s a l s ,  two s t ra teg ies  seem t o  have gained part icular  in te res t  

among taxonomists. Although different  i n  approach, they both 

employ sequential  procedures and lead t o  hierarchical grou- 

pings. One of the s t ra teg ies  is the algorithm proposed by 

Ward (1963). Its tdea is t o  agglomerate the points or the re- 

su l t ing  c lus te rs  by reducing t h e i r  number by one a t  each 

stage O f  a  sequential  fusion procedure, un t i l  a11 points are  

i n  one cluster.  Given k c lus te rs  a t  a stage, k(k-1)/2 possi- 

b i l i t i e s  have t o  be examined f o r  the reduction t o  k-I clus- 

t e r s .  A contrarg algorithm bas been suggested by Edwards and 

Caval l iSforza  (1965). The essence of t h e i r  method is the 

consecutive par t i t ion  of a s e t  of points i n t o  two subsets: 

first an i n i t i a l  s e t  is divided i n t o  two c lus te rs ,  then each 

of them is  subdivided in to  two smaller c lus te rs  separately, 

and so on, un t i l  individual points a re  reached. For the divi- 

s ion of n points i n to  two c lus te rs  there a re  2n'1 - 1 possi- 

ble  par t i t ions t o  be examined. A s t r i k ing ,  though not unex- 

pected, feature of the two methods i a  t h a t  operating with ex- 

ac t ly  the same minimum WGSS c r i t e r ion  the7 don't, i n  general, 

lead t o  the same hierarchical groupings. This i n  par t icular  

is the resu l t  when the points do not form well-separated 

clusters .  The reason f o r  the inconsistency is the obvious 

f a c t  t ha t  any grouping a t  a stage of a sequential procedure 

is partly determined bg the e a r l i e r  stages. Moreover, the 

cluster ing obtained by a sequential method may, f o r  the same 



DENDRITE METHOD FOR CLUSTER ANALYSIS 

reason, d i f f e r  considerably from the r e su l t  obtainable by an 

exact global procedure (cf. Fo r t i e r  and Solomon, 1966, P* 

503 I *  
In  t h i s  paper another s t rategy f o r  reducing the compu- 

t i n g  load is devised. It is based on the appl icat ion,  a s  an 

anci l lary objective function, of the t o t a l  length of t r ee s  

spanning a l l  points of the examined clusters .  It may be shown 

t h a t  using a s  a c r i t e r ion  of grouping the minimum of t h i s  

function, the same r e su l t  is obtained by any of the described 

sequential  procedures, i.e. by agglomeration or by divis ion.  

(Differences may only emerge from the occurrence of a choice 

of several  d i f fe ren t  t ree  edges of equal minimum length. ) The 

property of a unique solution f o r  the grouping based on the 

suggested t ree  function becomes evident when we r e c a l l  tha t  a 

t r ee  spanning a s e t  of points is "a connected graph tha t  has 

no c i r c u i t s  " (cf. ,  e.g., Ore, 1963, chapter 3). It follows 

from t h i s  def in i t ion  t h a t  several t r ee s  may be connected i n  

one t r ee  and, vice versa,  a t r ee  may be disconnected in to  a 

number of separate trees.  Furthermore, i f  points are connec- 

t ed  in to  t r ee s  i n  such a way t h a t  the minimum of the t o t a l  

length of the t r ee  edges is observed throughout the proce- 

dure, a shortest  possible t r e e  spanning a l l  points resul ts .  

Again, t r ee s  obtained from the shor tes t  t r ee  by consecutive 

removal of the longest edges w i l l  always ensure the minimum 

of the t o t a l  length. A rigorous proof of t h i s  may be found i n  

Florek e t  a l .  (1951a). More recently,  properties of such 

t r ee s  have been discussed by Gower and Ross (1969). The for- 

mer authors use the term dendrite instead o f  t r ee  and are  
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concerned with the shortest  dendrite. Gower and Ross (1969) 

c a l l  it the minimum spanning t r ee  (%I). Both terms, a s  sgno- 

nyms, w i l l  be used i n  t h i s  paper. 

The shor tes t  dendrite method has already been applied t o  

many taxonomical problems, first by Florek e t  a l .  (1951b), 

and then bg t h e i r  followers (cf.  the  reviews given bg Perkal, 

1953, 1963). A c lus t e r  analysis  basea en t i re lg  on tne short- 

e s t  dendrite is known i n  Poland a s  "Taksonomia Wroclawskaw 

(WrocZaw Taxonomg 1. An extensive review of various applica- 

t ions  of the MST is given by Gower and Ross (19691, who a l so  

describe the most common algorithms f o r  finding the LET. 

Algol 60 algorithms f o r  computing and printing the XiT have 

been written by Ross (l969a, b). 

I n  the approach t o  c lus te r  analysis  presented i n  t h i s  

paper (as  well a s  i n  an e a r l i e r  paper by C a l i h k i ,  1969) the 

construction of the shortest  dendrite is merely a  s t a r t i n g  

point f o r  a  minimum variance par t i t ion.  It reduces the enor- 

mous number of a l l  possible par t i t ions  of a  s e t  of points t o  

those only which a re  obtainable from a s p l i t  of the short- 

e s t  dendrite, Since the shortest  dendrite ensures t h a t  each 

point i s  connected with its nearest  neighbour (i.e. with 

t h a t  t o  which it has the smallest  dis tance) ,  the c lus te r ing  

of points from the same branch of the shortest  dendrite w i l l  

usually contribute t o  the WGSS l e s s  than the c lus te r ing  of 

points from d i f fe ren t  branches. Hence, the l imi ta t ion  of 

possible groupings t o  the optimal s p l i t s  of the shor tes t  den- 

d r i t e  eliminates i n  advance most of the "poor" grougings,i,e. 

those with higher values of i1/GSS.It nay happen t h a t ,  together 
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with the poor groupings, a l so  the absolute optimal grouping 

(with the minircum dGSS) w i l l  be elininated. This i s  l i ke ly ,  

however, only when the points are poorly sf parated i n to  clus- 

ters.But even i n  t h i s  case the s ac r i f i ce  of the absolute best 

grouping may be worth the considerable saving i n  computation. 

I n  fac t  no global procedures fo r  c lu s t e r  analysis  t ha t  could 

ensure the finding of a precise optimal grouping ex is t  and 

only methods t ha t  give a  nearly optimal solut ion are possible 

(cf .  Bolshev, 1969). 

2. Trn METHOD 

Suppose there are  n  individuals (or  samples from n popu- 

la t ions)  with observations on the same v var ia tes  f o r  each 

individual. 'Je may imagine them a s  being represented by n 

points i n  a  v-dimensional Euclidean space, P,, , . . . , Pn. The 

character of the var ia tes  is not e s sen t i a l  f o r  t h i s  represen- 

t a t i o n ,  provided a measure of the distances between the indi- 

viduals is well defined. It permits the computation of an 

n x n distance matrix, i . f .  the 3 matrix of Gower (1966), 

which is  essen t ia l  f o r  the s t a r t i n g  point of our method. 

Though the c r i t e r i a  we use are  based on cer ta in  s u m s  o f  

squares, it is not necessary t o  calculate  a  v  x v dispersion 

matrix of the points,  i.e. the g matrix of Gower (1466). 

If we aenote the or iginal  v  x n aata matrix by X_, with 

rows given by the observed var ia tes  and with coluinns given by 

the individuals,  we can write X_ = (g1, z2, . . . , x 1, where -n 
the column gi is a  vector of the v co-ordinates o f  the  point 

Pi. If we r e f e r  the co-ordinates t o  orthogonal axes of an or- 

dinary Euclidean space then the distance dij between Pi and 
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P w i l l  be properly defined by the function 
j 

2 
dij  = (zi - q ) ' ( = i  -sd),  i * ~  = l,2*...,  n. 

A s imilar  formula applies t o  the distance between a point and 

the centroid of the n points. I n  the approach t o  c lus te r  ana- 

l y s i s  which we follow, the dispersion of a group of n points 

is measured bg the sum of the squared distances of the points 

from t h e i r  centroid (cf. Gower, 1967). This sum i e  equal t o  

the t race of the matrix R_,  but may be obtained from the pair- 

wise distances d by applging the formula i s  
Trace g = no' (d$ + d& + . .. + 'n-I 2 ,n)' (1 

This is a useful formula avoiding the computation of the 8 
matrix. The same formula holde when the co-ordinates of 

points are  referred t o  oblique axes of a Euclidean space with 

an appropriate inner product, and thus with an appropriate 

distance function. This includes the case of points represen- 

t i n g  samples ra ther  than individuals with distances between 
2 t h e i r  means defined by Mahalanobis generalized distance (D ). 

There are  good reasons t o  extend the measure of dispersion 

given by the r igh t  side of (1) t o  other distance functions, 

even i f  they a re  not defined i n  terms of the inner products 

of Euclidean spaces. 

A s  s ta ted ,  we s t a r t  i n  any case with the distance matrix 

and construct the shortest  dendrite or MSI! (cf. Florek e t  

a l . ,  lg5la ,  or Gower and Ross, 1969). This is then parti-  

ti3neG by re lmvin~ some of i t s  edges: k - I i f  we want 60 di- 

v ide  t he  n points into k groups. The sum of squares cr i te r ion  

is  cslculntcd fo r  each c~f the ( ) possible s p l i t s .  If 
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we examine a s p l i t  leading t o  a d iv i s ion  3f the n points i n t o  

k groups 31 nl ,  n2, ... , nk points  (n + n2 + ... + nk = n ) ,  1 
then the (pooled) XGSS is ca lcu la ted  by applying the zi,ht 

hand s ide  of (1) t o  each of the  c l u s t e r s  separa te ly  and then 

surilming the r e s u l t s .  For ordinar2 Puclidean space the same 

r e s u l t  would be obtained b.; the analysis-of-variance pa r t i -  

t i o n  of the  u a t r i x  i n t o  p a r t s  corresponding t o  the disper-  

s i o n  between and wi thin  the  c l u s t e r s  of po in t s ,  2 = B_ + VJ, 

and then t ak ing  the  t r a c e  of (cf .  Friedman and hubin, 1467, 

p.1163). de mar then write 

WGAS = Trace I'J = Trace R + Trace g2 + .. . + Trace i&, -1 
where 

-1 2 2 2 Trace % = ng + d13(g) + ... + dn g-l ,ng(g) 1 9 

with di j(gl denoting the  d is tance  between points Pi and P .  i n  
J 

the  g-th c l u s t e r  (g  = 1, 2 ,  .. . , k). Since one could extend 

the  proposed method t o  cases  where the  points  a r e  not  sup- 

posed t o  be i n  an ordinary Puclidean space and the  d ispers ion 

matrices l?, and (= El + ... + I&) might have l i t t l e  mea- 

n ing,  we s h a l l  use the  t r a d i t i o n a l  no ta t ion  of JGSS Tor Trace 

,:l, BGSS (between-group sum of squares)  f o r  Trace and TSS - 
( t o t a l  sum of squares)  f o r  Trace R. 

Consistently with the p r inc ip le  01 bhe rnininium variance 

c r i t e r i o n  we decide on t h a c  p a r t i t i o n  o f  the s h o r t e s t  dsn- 

a r i t e  i n t o  k c l u s t e r s  f o r  wnich ,,GLS is a minimum. 3u t  un- 

l i k e  idwards and Cavall i&forza \17b>-) '.'.e bra'=" 

-----" 
the  ( ) p a r t i t i o n s ,  ins tead  of the  much l a r g e r  t o t a l  of 

p o s s i b i l i t i e s  ( a s  seen in F o r t i e r  and Solomon, 1965)* 



CALINSKI AND HARABASZ 

I f  k, the number of c lus te rs ,  is not known, we proceed 

a s  follows: f i r s t  we take k=2, then k=3, and so on. A t  each 

stage we f ind  "the best sum of squares s p l i t 1 '  of the den- 

d r i t e ,  fo r  which we calculate not only the (minimum) WGSS, 

but a l so  the (maximum) BGSS and the variance r a t i o  c r i te r ion  

We suggest the application of (2) a s  an informal indica- 

t o r  f o r  the "best number" of groups. It is evident t h a t  t h i s  

c r i t e r ion  is analogous t o  the F-s ta t i s t ic  i n  univariate am-  

l y s i s .  I n  f a c t  it has already been used by Edwards and 

Uavalli-Sforza (1965, p. 374) a s  an F-test in a nul t ivar iate  

c lus te r  analysis. 

Though there is no sat iefactory probabi l is t ic  theory t o  

j u s t i f y  the use of VRC (2) ,  the c r i t e r ion  has some desirable 
-2 

mathematical features  t h a t  are  encouraging. If d denotes the 
-2 

general mean of a l l  n(n-l)/2 squared distances d&, and d g 

t h a t  of the ng(ng-1)/2 squared disIJhnces within the g-th 

group (g = I ,  2 ,  ..., k), then, from (11, 
-2 TSS = 4 (n-l)d , 

-2 -2 -2 WGss = J( (n,-1 Id, + (nz-1 )a2+ . . . + (nk-q )%) 

-z--2 -2 -2 -2 @2 
= &((nl-lI(d dl) + (n2-l)(d -d2) + 0 . .  + (nk-l)(d -dk)) 

is a weighted mean o f  the differences betiveen the general 

and the within-group mean squared distances. Now we mag write 

BGSS iGSS ' v"c = / - = (d2+ A~<)/(:~- Ak).  
n-k 



DENDRITE METHOD FOR CLUSTER ANALYSIS 

It is evident  t h a t  i n  the  s p e c i a l  case of equal  d i s t ances  be- 

tween a l l  p a i r s  of points  Ak becomes zero and VRC i s  one. 

O t h ~ r ~ v i s e  the ninirnum WGSS c r i t e r i o n  mxiinizes Ak f o r  a  given 

k. A s  an average,  the function Ak may a l s o  be used t o  c m -  

pare p a r t i t i ~ n s  obtained f w d i f f e r e n t  numbers of g o u p s :  the  

a i f f e rence  Ak - w i l l  i nd ica te  an  average gain i n  the  

within-group c3mpactness r e s u l t i n g  from the  change i'rorn k - I 

t o  k Groups. Hence, the  behaviour of Ak a s  a  funct ion  of k 

n a y  be s e n s i t i v e  t o  the  exis tence  of groups. To see  t h i s  in 

connection with the VRC it is i n s t r u c t i v e  t o  wri te  
n-k 3 0 S S / ' % .  ( 1  + T a  ) / ( I  - a k ) ,  k-I lc I k  

where -2 a k = A k / d .  

Since the  minimum A'S23 (and so  the  maximum B W S )  is  used i n  

( 3 1 ,  we have ak  b e t f ~ e e n  0 and 1 , w i t h  ak  = 0 f a r  equal  d is -  

t ances  between a l l  p a i r s  of points  and vvich alC = I f o r  an  

" i aea l "  c l u s t e r i n g ,  i . e .  f o r  no v a r i a t i o n  wi th in  troups.  ( I f  

a l l  po in t s  are  a i f f e r e n t  t h i s  is n3t  obtained e a r l i e r  than a t  

the ~ i n a l  s tage  of k = n.)  If  the  po in t s  a re  uni forn~lg  d is -  

t r i o u t e d  i n  space,  ak  w i l l  incredse slol:ily and more o r  l e s s  

; teaCily c i t h  t h e  r i s i n ~  vslue of k. And f r o m  (;), the V'X 

w i l l  t end  t o  decrease when k  inc reases  and ak  is cons tan t ,  

t h i s  be ing more o r  l e s s  counterbalanced by the  increase  i n  

ak. Anyway, a  uniform d i s t r i b u t i o n  of po in t s  i n  space w i l l  be 

usual ly  r e f l e c t e d  by a  smooth run of va lues  of the  VRC. On 

t h e  o the r  hand, i f  the  points  a r e  grouped i n t o  ko n a t u r a l  

c l u s t e r s ,  with a  smal l  wi th in-c lus ter  v a r i a t i o n ,  the  change 

from kg - 1 t o  ko w i l l  cause a  considerable increase  i n  ak  
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and so a rapid r i s e  of the VRC, possibly i'orming a hump. More 

precisely,  the increase i n  the number of groups from ko - 1 

t o  kg w i l l  cause an increase of the VRC i f  a /ak , exceeds 
0- 

the r a t i o  (kg - ?) / (ak , + ko - 2 )  which is never smaller 
0- 

Chan one. 

It follows from the discussion above tha t  the computa- 

t i on  of VRC f o r k  = 2,  3 ,  ... may be helpful i n  deciding on 

the "best number" of groups. We suggest choosing tha t  number 

k f o r  which the VRC has an absolute or loca l  maximum, or a t  

l e a s t  has a comparatively rapid increase. I f  there a re  sever- 

a l  such loca l  maxima, it w i l l  be most economical t o  choose 

the smallest of the re la ted  values of k. r h i s  i n  l a c t  means 

t ha t  the computation can be stopped when the first loca l  max- 

imum is reached. The process may then be repeated for  each of 

the resul t ing groups separately,  and so  on. This fur ther  sug- 

gests  t h a t  the dicho'comous grouping of Fdwards and Cavalli- 

Sforza (196.5) is advisable when the f i r s t  values of VRC form 

a monotonic decreasing sequence. Also it seems tha t  when the 

values of VRC are increasing monotonically throughout the 

range of k ,  then no reasonably be t t e r  par t i t ion  of  the points 

ex i s t s  than tha t  i n to  individuals. 

3. THE COMPITTm PROGRAMS 

Several computer prograins are  available fo r  the dendrite 

method. Our own programs are written i n  Most I f o r  Odra 1013, 

i n  Mat I V  f o r  Mirisk 22 and i n  Algol f o r  Odra 1204. Fortran 

programs have been written by Wishart (1970) - a Fortran I1 

program for  IBM 1620 and a Fortran I V  program f o r  IBM 360. 

They are  included i n  the CLUSTAN IA su i t e  of Fortran programs 
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f o r  c lu s t e r  analysis  and other multivariate procedures, dis- 

t r ibu ted  by the St. Andrews University Computer Laboratory, 

Scotland. 

The programs compute and pr in t  the shortest  dendrite and 

then divide it in to  2 ,  3 ,  ... , n-1 c lu s t e r s  on the minimum 

ViGSS basis.  A minimum and a  maximum f o r  c lu s t e r  numbers t ha t  

are  of i n t e r e s t  mag be specified, t o  l i m i t  the computations. 

This option is important, since f o r  n  greater than 20 the 

execution of a l l  optimal divis ion from k = 2 t o  k = n - 1 

mag require considerable computing time. Several grouping 

c r i t e r i a  are  computed and printed, including the suggested 

VRC which helps t o  decide on the "best numberff of c lu s t e r s  

within the specif ied range. 

The programs are  r e s t r i c t e a  t o  n  not greater than 140. 

4. EXAMPLES 

The main purpose of presenting the following examples is 

t o  compare the dendrite method with the sequential  methods of 

Ward (1963) and of Edwards and Cavalli-Sforza (1965). It 1s 

a l so  hoped tha t  the examples w i l l  maice more exp l l c l t  the iaea 

ox l i m i n g  points i n to  dendrites f o r  a  c lus te r  analysis.  

4.1. Bacteriological Data 

The data of t h i s  example consis t  of a  number of scores 

observed fo r  s i x  species of bacter ia  and are taken from 
6 Edwards and C a v a l l i S f  orza (1965). Table I glves the ( ) 

squared distances between the six species i n  an ordinary EU- 

cl idean space. The shor tes t  dendrite constructed on the basls  

of these distances is shown i n  Figure 1. It may be obtained 

i n  the following way: We s t a r t  bg choosing the shor tes t  dis-  
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t a m e  between the points (species),i.e. the distance between 

A and B. It forms the f i r s t  edge of the dendrite,  A-B. Then 

the shortest  edge which connects t o  A-B is added, i.6. B-D. 

Now the dendrite consis ts  of two edges, A-B-D. It is  then ex- 

tended by adding the shortest  of the remaining edges which 

connects t o  a t  l e a s t  one edge of the present dendrite without 

forming a c i r cu i t ,  i.e. D4. The dendrite i a  now of the form 

The Half-Matrix of Squared Distances f o r  
the Bacteriological Data 

A B C D E F Points 

5 11 11 I 4  14 A 
10 6 15 

l3 21 B 6 l7 13 15 C 
D 

6 E 
F 

FIG. 1 

The shortest  dendrite f o r  the bacteriological data. 
1 4  
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A-B-D-C. Following t h e  same r u l e  of extension,  the  edge B-E 

or  D-E is t o  be added, s ince  both a r e  of equal l eng th  and 

s h o r t e r  than any Other t o  be considered. These two poss ib i l i -  

t i e s  a r e  ina ica ted  i n  Pigure 1 by two a l t e r n a t i v e  broken 

l i n e s .  Therefore, the  graph drawn i n  Figure 1 should be in- 

t e r p r e t e d  a s  g iving two a l t e r n a t i v e  s h o r t e s t  dendr i tes  with 

e i t h e r  the  edge B-E o r  D-E. The dendr i te  is completed by ad- 

ding E-F, the  s h o r t e s t  edge which connects the  remaining 

point  F. The lengths  of the  edges, t h a t  r e f e r  t o  the  distan- 

ces  between the  connected points ,  a r e  a l s o  given i n  Figure I. 

The r e s u l t i n g  s h o r t e s t  dendr i te  (MST) w i l l  now be s p l i t  

i n t o  most compact groups of points. This may be done i n  the  

same way a s  i n  Edwards and C a v a l l i S f o r z a  (1965), except t h a t  

only those p a r t i t i o n s  a r e  examined which emerge a s t e r  remo- 

ving one edge from the  dendr i te  a t  each s tage of the  subdi- 

v is ion.  This l eads  t o  exactly t h e  same s p l i t s  a s  those ob- 

t a ined  by Edwards and Cavalli-Sforza (1965), who examined a l l  

possible rvays of subdividing the  points i n t o  two c l u s t e r s  a t  

a given stage of the  sequent ia l  procedure. The p a r t i t i o n  in to  

c l u s t e r s  of ABCD and EP r e s u l t s  from the  removal of the  edge 

E-B o r  E-D (depending on which one is included i n  the  den- 

d r i t e ) ,  a f t e r  examining only 5 out o f  the  31 possible s p l i t s .  

Further subdivision i n t o  c l u s t e r s  of Ai3 and CD is  achieved by 

t r y i n g  only 3 out of the  7 possible s p l i t s .  

B u t  the c l u s t e r i n g  needs not t o  be r e s t r i c t e d  t o  the di- 

chotom~us subdivision of the s e t  of points.  If s o  des i red,  we 

LUY s p l i t  the ~ e n d r i k e  i l l to a "given number" o f  groups or de- 

cide on the " b e s t  nunber" 3f Groups by examinint the behsv- 
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i o u r  of t h e  Vl?C ( a s  descr ibed  i n  s e c t i o n  2). 

The d i v i s i o n  i n t o  k = 2 groups has  a l ready been d i s -  

cussed ,  the b e s t  s p l i t  is ABCi): ZF. The d i v i s i o n  i n t o  k = 3 

groups r e s u l t s  from r e ~ m v i n g  2 edges from the  dendr i t e .  hp- 

p ly ing  the  minimum JCSS c r i t e r i o n ,  AB: CD: EF is obtained aE 

t h e  bes t  s p l i t .  To rece ive  t h e  p a r t i t i m  i n t o  k = 4 groups 

vve renove 3 e d ~ e s ,  obta in ing  i n  t h i s  case two poss ib le  bes t  

s p l i t s ,  AB: 3 :  D: E7 or  AB: CD: E: F. F i n a l l y ,  f o r  k = 5 we 

ob ta in  a s  the  bes t  sslit  A 3 :  C:  D: E: F. It has been found 

t h a t  chen emmFr,irig a l l  poss ib le  s p l i t s  i n t o  1; = 2 ,  3 ,  4 and 

5 ~ s 3 u p s  n i t h  t he  minimum iiGSS c r i t e r i o n  the  r e s u l t s  a r e  ex- 

act;]-g the ::i3~c an those j u s t  presented. Table I1 s u m r i z s s  

the  gr3uping c r i t c r i a  3f t he  r e s u l t i n g  s p l i t s .  It r € v e a l s  

sz~rne h i e r a r c h i c a l  s t r u c t u r e  o f  t he  da ta .  This  conclus ion  is  

& m a n  Ir3m the V W  given i n  the  l a s t  row. It sug&ests  t h a t  

the bes t  s p l i t  i s  obtained wi th  t w o  groups ,!shich i n  t h i s  case 

is d i r e c t l y  cv ident  i n  the  d i s t ance  t a b l e  (Table I): 3 and F 

a r e  f a r  a p a r t  from the  r e s t  of t h e  points .  Th i s  a l s o  e x p l a h r  

t h e  agreement between the  r e s u l t s  of t h e  dendr i t e  method and 

those  obtained by Edwards and Cavall i -Sforza (1965). The f u l l  

agreement of t h e  r e s u l t s  of a l l  t h r e e  compared methods and 

t h e  exac t  g lobal  method may be expla ined  bg t h e  apparent  gooi 

s e p a r a t i o n  of t he  h i e r a r c h i c a l l y - b u i l t  c l u s t e r s .  
4.2. Anthropometric Data 

I n  t h i s  example we reexamine t h e  anthropometric  da t a  o- 

r i g i n a l l y  analyzed by Rao (1952) and used a s  an  example a l s o  

, bg Edwards and C a v a l l i S f  orza (1965). Here t h e  d i s t a n c e s  be- 

tween po in t s  mhich r ep resen t  sample means of  n ine  anthropo- 
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TABLE I1 

C r i t e r i a  f o r  the  Clus te r  Analysis of the  Bac te r io log ica l  Data 

Number o  groups 2 3 4 5 
Number of possible s p l i t s :  

t o t a l  31 90 65 15 
i n  dendr i te  method 5 10  10  5  

Max B G S S ~  14.25 21.0 24.0 27. 0  
hlin W G S S ~  15.25 8.5 5.5 2 5 

n-k-Max BGSS 
= k-l kin WGSS 

a The same f o r  Nard method, Xdwards and Cavalli-Sforza 
method, dendr i te  method and the  exact  g lobal  method. 

metric cha rac te r s  f o r  twelve Indian c a s t e s  and t r i b e s  a r e  de- 

f i n e d  bg Mahalanobis generalized dis tance .  They a r e  given i n  

Table I V  of Edwards and Cavalli-Sforza (1965). The s h o r t e s t  

dendr i te  based on the  d is tances  is given i n  Figure 2 ,  i n  two 

d i f f e r e n t  versions.  The dendr i te  ( a )  on the  l e f t  has been 

drawn i n  the  usual way, with the  l eng th  of i ts  edges propor- 

t i o n a l  t o  Mahalanobis D. The dendr i te  (b)  on the r i g h t  has 

been drawn i n  a  plane with the  f irst  two p r inc ipa l  c~mponents 

a s  coordinate axes ( a s  found by Rao, 1952, chapter gc). This 

p resen ta t ion  s l i g h t l y  d i s t o r t s  the  lengths  of the  edges. Real 

values  of D a r e  given i n  both of the  insomorphic dendrites.  

Hithout any a  p r i o r i  decis ion on the  number of c l u s t e r s ,  

we have performed the  whole sequence of ca lcu la t ions  descr i -  

bed i n  s e c t i o n  2. Some of the  grouping c r i t e r i a  a r e  given 

i n  Table 111. One i n t e r e s t i n g  point  i s  the  reduction of the 

number of p a r t i t i o n s  t o  be examined by the  minimum 'NGSS c r i -  



The shortest dendrite for the anthropometric data drawn (a) 
in the usual way and (b) in the chart of the first two prin- 
cipal components (canonical variates). 
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ter ion.  Another s t r i k i n g  point is the pattern of the sequence 

of values obtained f o r  the VRC: it has a greater value f o r  k 

= 5 than f o r  k = 4 or 6. This is  the only disturbance i n  the 

monotonic increase of t h i s  c r i t e r ion  f o r  r i s i ng  values of k. 

Following the suggestion given a t  the end o f  sect ion 2 ,  we 

should then take k = 5 a s  the "best number" of groups of 

points i n to  which t o  s p l i t  the shor tes t  dendrite. The YJGSS 

s p l i t t i n g  of the shortest  dendrite of the anthropometric data 

leads t o  the following f ive  c lus te rs :  ( I )  Ahir, K u r m i ,  Other 

Artisan, Kahar; (11) Chat t r i ,  Muslim; (111) Dam, Bhil;  (IV) 

Bast i  Brahmin, Other Brahmin; (V) Bhatu, Habru. This c luster-  

ing is exactly the same a s  t ha t  obtained by Rao (1952), who 

ar r ived  a t  it largelg by in tu i t i on  supported by an average 

distance c r i te r ion .  The same r e s u l t  has a l so  been obtained by 

the method of Ward (1963). 

A di f fe ren t  grouping of these data was found by Edwards 

and Cava l l iS f  orza (19651, who used the m i n i m u m  'WGSS c r i t e r i -  

on i n  a dichotomous subdivision of the s e t  of points. B u t  

since the values of the VRC, a s  given i n  Table 111, form an 

almost consistently increasing sequence, there is no reason 

t o  assume a hierarchical  s t ruc ture  of the points. Therefore, 

a method which sequentially divides the s e t  i n to  two groups 

a t  each stage of the procedure is here unjustified. A s  the 

r e su l t  of such inappropriate grouping the Ahir have been 

clustered with the Brahmin, though the former are  evidently 

nearer t o  the Kurmi. Edwards and Cavalli-Sf orza (1965) are a- 

ware of t h i s  d i f f icu l ty  but consider unfeasible the examina- 

t i on  of a l l  possible s p l i t s  i n to  more than two groups. The 



TABLE I11 

Cr i t e r i a  f o r  the Cluster Analysis of the Anthropometric Data 

- -  --- 

Number of groups 2 3 4 5 6 7 8 9 10 I1 

Number of ~ o s s i b l e  
s p l i t s  : 

t o t a l  2047 1323652 159027 1705 66 611501 
56526 

R) 
1379400 6273% 22275 

0 i n  dendrite method 11 55 165 330 462 462 330 165 55 I1 

Min WGSS : 
i n  l a r d  method 187.12 132.12 83.33 46.25 33-75 22.75 12.17 7-50 3-50 1.00 
in Edwards and 180.69 126.60 83.70 48.50 36.00 24.50 13.50 7.50 3-50 1-00 v a l l i S f o r z a  method 
i n  dendrite method 180.69 126.60 80.63 46-25 33.75 22e75 12.17 7.50 3-50 1-00 

VRC i n  dendrite method 3.57 4.41 5.62 7.74 7.71 8.35 11.20 12.16 15.09 24.97 
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considerable reduct ion of t h e  number of possible ways gained 

by the  dendr i te  method removes t h i s  d i f f i c u l t y  and avoids d i -  

chotomous c l u s t e r i n g  not jus t iLied by data.  The 1 u l 1  agree- 

ment of the  proposed method with the  r e s u l t  of Rao (1952) 

suppor ts  the suggested VRC of the "best number" of groups. 

Furthermore, judging from the  values  of the ninimum WGSS c r i -  

t e r i o n  given i n  Table I11 f o r  a l l  th ree  compared methods, the  

dendr i te  method has appeared super io r  t o  the method of Ward 

(1963) f o r  k = 2 ,  3 and 4, and super io r  t o  t h a t  o f  Edwards 

and Cavalli-Sforza (1965) f o r  k = 4 ,  5,  6 ,  7 and 8. I n  no 

case has the  dendr i te  method been i n f e r i o r  t o  any of the  se-  

quen t i a l  methods. 

4.3. P lan t  Breeding-Data 

The data  analyzed i n  t h i s  subsect ion (co l l ec ted  by D r  Z. 

Kloczowski of the  I n s t i t u t e  of P lan t  Breeding and Acclimati- 

za t ion ,  Poznali) cons i s t  of 4 measurements on 30 f lowers from 

each of 7 s t r a i n s  of sunflower.Table I V  gives the  Mahalanobis 
2 dis tances  (D ) between the  &ra ins  c~mputed f o r  a l l  measure- 

ments. A t  the bottom of the  t a b l e  the  smal les t  s i g n i f i c a n t  

squared dis tances  a t  the  5% and 1% l e v e l s  a r e  given. They a r e  

computed from Hotell ing's  T ~ - d i s t r i b u t i o n .  The s h o r t e s t  den- 

d r i t e  based on Table I V  is given i n  Figure 3. The numbers of 

poss ible  s p l i t s  toge the r  with the  ca lcu la ted  c r i '  e r i a  a r e  

presented i n  Table V. The VRC suggests a  s p l i t  i n t o  r = 5 

groups. The s p l i t t i n g  of the  dendr i te  t h a t  minimizes WGSS 
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The Half-Matrix 9f Squared Mahalnobis Distances 
f o r  the  P lan t  Breeding Data 

A B C D E F G Points  

1.42 0.36 1.93 1.23 3.57 5-52 A 
1.25 4.49 1.10 2.40 4.04 B 

1.23 1 1 2  2.36 4.93 C 
3.96 4 4 5  6.66 D 

1.90 3.13 E 
0.31 F 

G 

I I I I I 
l3.5 

I 
140 W 15D 155 ria 

FIRST COMPONENT 

FIG. 3 

The sho. .;:st dendr i te  f o r  the  p lant  breeding data. 
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TABLE V 

C r i t e r i a  f o r  the  Clus te r  Analysis of the  P lan t  Breeding Data 

Number of groups 2 3 4 5 6 

Number or possible 
s p l i t s  : 
t o t a l  63 301 350 140 2 1 
i n  dendr i te  method 6 15 2 0 15 6 

iihx B G S S ~  4-49 6-49 7.39 7.93 8.11 
 in W G S S ~  3.77 1.78 0.89 0.34 0.16 

VRC = n-k BGSS 
k-l'W 

a ~ h e  same f o r  Ward method, Edwards and C a v a l l i S f  orza 
mebhod, dendr i te  method and the  exact  g lobal  method. 

(= 0.34) is  D: AC: B: E: FG. We no t i ce  t h a t  the  two p a i r s  of 

s t r a i n s  that have not  been separa ted i n  the  s p l i t  a r e  the on- 

l y  ones t h a t  a r e  not  s i g n i f i c a n t l y  d i f f e r e n t  ( c f .  Table IV). 

It is a l s o  evident from TableIV t h a t  no other  d i v i s i o n  of the 

seven s t r a i n s  i n t o  f i v e  c l u s t e r s  could give a  smal ler  WGSS 

than the  one based on the  s h o r t e s t  dendr i te ,  I n  f a c t  it has 

been found t h a t  a l l  th ree  compared methods give here the  same 

r e s u l t s ,  which a r e  i n  complete agreement with the  r e s u l t s  ob- 

t a i n e d  from eramining a l l  possible s p l i t s .  

F ina l ly ,  it m y  be i n t e r e s t i n g  t o  compare the  sequences 

of values  of the  VRC (2)  ca lcu la ted  f o r  the  th ree  examples 

under consideration,  They a r e  given i n  the c h a r t s  of Figure 

4. The c r i t e r i o n  f o r  the  bac te r io log ica l  data ( a )  r e s u l t s  i n  

a decreasing sequence thus  suggesting a  possible h ie ra rch ica l  

s t r u c t u r e  of the points.  The sequence f o r  anthropometric da- 

t a  (b )  is increas ing,  except f o r  a  hump a t  k = 5. This sug- 

g e s t s  t h a t  the c l u s t e r s  a re  not wel l  separated and i f  the re  
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I I I I I I I I I I I  
1 3 4 5 6 7 8 9 0 1 1  

N U M  b E R  O F  C L V S T E  

FIG. 4 

The behaviour of the variance r a t i o  c r i t e r ion  f o r  the (a)  bac- 
t e r io log i ca l ,  (b) anthropometric and (c)  plant breeding data. 

are  any c lus te rs  the most l ikely number of them is f ive.  The 

behaviour of the c r i t e r ion  is par t icular ly  evident i n  the 

sunflower case ( c ) ,  suggesting the cluster ing in to  5 groups. 

These examples do not exhaust a l l  possible performances 

~f the VXC, and we are aware t ha t  i n  some cases the decision 

on the "best number" of groups based on VRC may be vague. B u t  

the cases we have investigated show tha t  t h i s  c r i t e r ion  gives 

some instruct ive insight  i n to  the s t ructure  of points. To 

make the appl icat ion of the c r i t e r ion  more precise,  fur ther  

s tudies  on the geometrical d i s t r ibu t ions  of points i n  Eucli- 

dean spaces would be necessary. 
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2. CONCLUSION 

Data cons i s t ing  of v  measurements on each of n  ob3ec.c~ 

( ind iv idua l s  o r  samples) may meaningfully be subjected t o  

c l u s t e r  a n a l g s i s  i f  a  measure of pairwise d is tance  between 

ob jec t s  i s  well  defined. The ob jec t s  may then be thought of 

a s  points  i n  a  Euclidean space and the  compactness of clus-  

t e r s  of them may be measured by the  sums of the  squared dis-  

tances  of the  points  from the  cen t ro ids  of the  c l u s t e r s .  The 

minimum of the  WGSS becomes then a n  appropr ia te  c r i t e r i o n  f o r  

c l u s t e r  analys is .  The enormous number of possible ways ~f di -  

v id ing the  s e t  of n  points  i n t o  k groups can e f f e c t i v e l y  be 

reduced by const ruct ing and s p l i t t i n g  the s h o r t e s t  dendrite.  

This dendr i te  method appears t o  be a  s u i t a b l e  and s a t i s f a c t o -  

ry approximate procedure. The "best number" of groups, k ,  can 

o f t en  be determined by the  VRC, which a l s o  gives  same i n s i g h t  

i n t o  the  s p a t i a l  s t r u c t u r e  of the po in t s ,  which need not  ne- 

c e s s a r i l y  be h ie ra rch ica l .  The proposed method does not  i m -  

pose any such s t r u c t u r e  on the  r e s u l t i n g  c l u s t e r s .  I n  t h i s  

sense it is more widely appl icable  than many other  methods of 

c l u s t e r  ana lys i s .  P a r t i c u l a r l y ,  it seems t o  be super ior  t o  

the  sequen t i a l  procedures of Ward (1963) and Edwards and 

Cavalli-Sforza (1965), or a t  l e a s t  advisable a s  a  method com- 

plementary t o  them. Performing and comparing a l l  the  three  

procedures it is always possible t o  decide on t h a t  grouping 

which gives the  lowest WGSS. 
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