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A DENDRITE METHOD FOR CLUSTER ANALYSIS

T. Calinski and J. Harabasz

Academy of Agriculture, Poznan, Poland

Key Words & Phrases: numerical taxonomy; cluster analysis; minimum variance
(WGSS) criterion for optimal grouping; approximate grouping procedure;
shortest dendrite = minimum spanning tree; variance ratio criterion
for best number of groups.

ABSTRACT

A method for identifying clusters of points in a multi-
dimensional Euclidean space is described and its application
to taxonomy considered. It reconciles, in a sense, two dif-
ferent approaches to the investigation of the spatial rela-
tionships between the points, viz., the agglomerative and the
divisive methods. A graph, the shortest dendrite of Florek et
al. (1951a), is constructed on a nearest neighbour pasis ana
then divided into clusters by applying the criterion of mini-
mum within-cluster sum of squares. This procedure ensures an
effective reduction of the number of possible splits. The
method may be applied to a dichotomous division, but is per-
fectly suitable also for a global division into any number of
clusters., An informal indicator of the "best number" of clus-
ters is suggested. It is a "varlance ratio criterion" glving

some insight into the structure of the points, The method is
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jllustrated by three examples, one of which is original. The

results obtained by the dendrite method are compared with
those obtained by using the agglomerative method of Ward

(1963) and the divisive method of Edwards and Cavalli-Sforza
(1965).
1. INTRODUCTION

Various methods have been proposed for identifying
groups of points in multidimensional spaces. The demand for
such methods comes specially from systematists engaged in
classificatory or taxonomical problems, in which each of the
multivariate individuals under study may be considered as g
point in a multidimensional space with an assigned distance
measure. Thus classification of individuals consists in grou-
ping of points. These groups are often called clusters,
though no satisfactory definition of this concept exists. Its
intuitive mecaning is "that polints within a cluster are close
together, while the clusters themselves are far apart" (Rao,
1964, p. 351). The lack of a precise definition of such clus-
ters as well as the computational difficulties in finding ab-
solute optimal groupings give rise to many different approa-
ches to cluster analysis and so to the application of various
techniques.

Two methods of cluster analysls may differ in the choice
of a measure of homogeneity within clusters and of heteroge-
neity between clusters, or in the procedure of applying this
measure in grouping points into clusters, or in both. A func-
tional relation chosen as a measure of the within-cluster ho-

mogeneity (or the between-cluster heterogeneity) usually re-
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flects the relative desirability of grouping and depends on

the nature of the problem. This objective function,as it is

sometimes called (cf. Ward, 1963), does not, however, deter-
mine a method of cluster analysis. This usually depends also
on the algorithm by which the clusters are constructed to op-
timize the objective function.Since cluster analysis is often
applied in large-scale studies, the algorithm must not only
be consistent with the criterion reflected by the objective
function but also feasible in practical application to exten-
sive data. Often a precise optimal solution for a well de-
fined objective function is not possible, for the amount of
computation involved becomes enormously large even with a mo-
derate number of individuals. In such circumstances a non-
-exhaustive approximate procedure allowing for a reduction in
computations must be devised. This may be done in different
ways and so various techniques are suggested.

A familiar objective function applicable in cluster ana-
1lysis is the within-group (cluster) sum of squares (WGSS). It
seems natural to regard the optimal grouping of n points into
k clusters as that for which WGSS is minimized. This criteri-
on reflects a desire to find some minimum variance spherical
clusters.

However attractive, the application of WGSS as an objec—
tive function demands the examination of all possible group=—
ings of n points into k clusters and thus becomes impractica-
ble even for small values of n. For example, the grouping of
10 points into 5 clusters requires 42 525 possibilities to be

examined, and this number increases rather rapidly with the
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rise in n (c¢f. Fortier and Solomon, 1966, section 41). There-
fore, it is important to have a strategy that would reduce
efficiently the number of computations. Among various propo-
sals, two strategles seem to have gained particular interest
among taxonomists. Although different in approach, they both
employ sequential procedures and lead to hierarchical grou-
pings. One of the strategles is the algorithm proposed by
Ward (1963). Its idea is to agglomerate the points or the re-
sulting clusters by reducing thelr number by one at each
stage of a sequential fusion procedure, until all points are
in one cluster. Given k clusters at a stage, k(k-1)/2 possi-
bilities have to be examined for the reduction to k=1 clus-
Yers. A contrary algorithm has been suggested by Edwards and
Cavalli-Sforza (1965)., The essence of their method is the
consecutive partition of a set of points into two subsets:
first an initial set is divided into two clusters, then each
of them is subdivided into two smaller clusters separately,
and so on, untlil individual points are reached. For the divi-
sion of n points into two clusters there are 2n-1 - 1 possi-
ble partitions to be examined. A striking, though not unex-
pected, feature of the two methods 1is that operating with ex-
actly the same minimum WGSS criterion they don’t, in general,
lead to the same hierarchical groupings. This in particular
is the result when the points do not form weil-separated
clusters. The reason for the inconsistency is the obvious
fact that any grouping at a stage of a sequential procedure
is partly determined by the earlier stages. Moreover, the

clustering obtained by a sequential method may, for the same
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reason, differ considerably from the result obtainable by an

exact global procedure (cf. Fortier and Solomon, 1966, p.
503 ).

In this paper another strategy for reducing the compu-
ting load is devised. It is based on the application, as an
ancillary objective function, of the total length of trees
spanning all points of the examined clusters. It may be shown
that using as a criterion of grouping the minimum of this
function, the same result is obtained by any of the described
sequential procedures, i.e. by agglomeration or by division.
(Differences may only emerge from the occurrence of a choice
of several different tree edges of equal minimum length.) The
property of a unique solution for the grouping based on the
suggested tree function becomes evident when we recall that a
Yree spanning a set of points is "a connected graph that has
no circuits " (cf., e.g., Ore, 1963, chapter 3). It follows
from this definition that several trees may be connected in
one tree and, vice versa, a tree may be disconnected into a
number of separate trees. Furthermore, if points are connec-
ted into trees in such a way that the minimum of the total
length of the tree edges is observed throughout the proce-
dure, a shortest possible tree spanning all points results.
Again, trees obtained from the shortest tree by consecutive
removal of the longest edges will always ensure the minimum
of the total length. A rigorous proof of this may be found in
Florek et al. (1951a). More recently, properties of such
trees have been discussed by Gower and Ross (1969). The for-

mer authors use the term dendrite instead of tree and are




CALINSKI AND HARABASZ

concerned with the shortest dendrite. Gower and Ross (1969)
call it the minimum spanning tree (MST). Both terms, as syno-
nyms, will be used in this paper,

The shortest dendrite method has already been applied to
wany taxonomical problems, first by Florek et al. (1951b),
and then by their followers (c¢f, the reviews given by Perkal,
1953, 1963). A cluster analysis based entirely on the short-
est dendrite is known in Poland as "Taksapomia Wrociawska"
(Wrocaw Taxonomy). 4n extensive review of various applica~-
tions of the MST is given by Gower and Ross (1969), who also
describe the most common algorithms for finding the MST.
Algol 60 algorithms for computing and printing the LST have
been written by Ross (196%a, b).

In the approach to cluster analysis presented in this
paper (as well as in an earlier paper by Calinski, 196%) the
construction of the shortest dendrite is merely a starting
point for a minimum variance partition. It reduces the enor-
mous number of all possible partitions of a set of points to
those only which are obtainable from a split of the short-
est dendrite. Since the shortest dendrite ensures that each
point is connected with its nearest neighbour (i.e. with
that to which it has the smallest distance), the clustering
of points from the same branch of the shortest dendrite will
usually contribube to the WGSS less than the clustering of
points from different branches. Hence, the limitation of
possible groupings to the optimal splits of the shortest den-
drite eliminates in advance most of the "ooor" groupings,i.e.

those with higher values of WGSS.It may happen that, together
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with the poor groupings, also the absolute optimal grouping
(with the minimum WGSS) will be eliminated. This is likely,
however, only when the points are poorly separated into clus-
ters.But even in this case the sacrifice of the absolute best
grouping may be worth the considerable saving in computation.
In fact no global procedures for cluster analysis that could
ensure the finding of a precise optimal grouping exist and
only methods that give a nearly optimal solution are possible
(cf. Bolshev, 1969),.

2. THE METHOD

Suppose there are n individuals (or samples from n popu-
lations) with observations on the same v variates for each
individual, We may imagine them as being represented by n
points in a v-dimensional Euclidean space, Pq, eeey Pn‘ The
character of the variates is not essential for this represen-
tation, provided a measure of the distances between the indi-
viduals is well defined. It permits the computation of an
n x n distance matrix, i.e. the § matrix of Gower (1966),
which is essential for the starting point of our method.
Though the criteria we use are based on certain sums of
squares, it is not necessary to calculate a v x v dispersion
matrix of the points, i.e. the R matrix of Gower (1966).

If we denote the original v x n data matrix by X, with
rows given by the observed variates and with columns given by
the individuals, we can write X = (gq, Xos eees En)' where
the column Xy is a vector of the v co-ordinates of the point
Pi' If we refer the co-ordinates to orthogonal axes of an or-

dinary Euclidean space then the distance dij between Pi and
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P, will be properly defined by the function

J
d?j = (Ei - ]_!3)1(51 - _x_d), i’j = 1’2’-.0, Ne

A similar formula applies to the distance between a point and

the centrold of the n points. In the approach to cluster ana-
lysis which we follow, the dispersion of a group of n points
is measured by the sum of the squared distances of the points
from their centroid (cf. Gower, 1967). This sum is equal to
the trace of the matrix R, but may be obtained from the pair-
wise distances dij by applying the formula

e a2 L a2 2
Trace B =n (d12 + d13 + cee * %_1’n)o . (1)

This is a useful formula avoiding the computation of the R
matrix. The same formula holds when the co-ordinates of
points are referred to oblique axes of a Euclidean space with
an appropriate inner product, and thus with an appropriate
distance function. This includes the case of points represen-
ting samples rather than individuals with distances between
their means defined by Mahalanobis generalized distance (Dz).
There are good reasons to extend the measure of dispersion
given by the right side of (1) to other distance functions,
even if they are not defined in terms of the inner products
of Euclidean spaces.

As stated, we start in any case with the distance matrix
Q and construct the shortest dendrite or MST (cf. Florek et
al.,1951a, or Gower and Ross, 1969). This is then parti-
tioned by rewoving some of its edges: k - 1 if we want Yo di=-

vide the n points into k groups. The sum of squares criterion

n-1

1K1 ) possible splits., If

is calculated for each of the (
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we examine a split leading to a division of the n points into
k groups of N4y Doy essy By points (nq 0o+ ees My = n),
then the (pooled) WGSS is calculated by applying the right

hand side of (1) to each of the clusters separately and then

suuming the results. For ordinary Fuclidean space the same
result would be obtained by the analysis—of-variance parti-
tion of the matrix R into parts corresponding to the disper-
sion between and within the clusters of points, Rlz B + W,
and then taking the trace of W (cf. Friedman and kubin, 1467,

p.1163), We may then write
4GSS = Trace W = Trace R, + Trace R, + +.. + Trace g,
where
=132 2 2
Trace Ro = n (d12(g) + dz(g) *eer G

- )
R n, 1,ng(g)

13(g) denoting the distance between points Pi and Pj in

the g-th cluster (g = 1, 2, +++, k). Since one could extend

with 4,

the proposed method to cases where the points are not sup-
posed to be in an ordinary Fuclidean space and the dispersion

matrices R, B and ¥ (= B, + «.. + R ) might have little mea-

ning, we shall use the %traditional notation of WGSS for Trace
i, BGSS (between-group sum of squares) for Trace B and TSS
(tobal sum of squares) for Trace R.

Consistently with the principle of the minimum variance
criterion we decide on that partition of the shorvest den-

arite into k clusters for which WG3S is a minimum. But un-

I ravew

1ike wdwards and Cavalli-Sforza (19eD) we seaxwa ow

r total of
( n 1 ) partitions, instead of the much large

the
d Solomon, 1966).

pOSSlbllltieS (as seen in Fortier an
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If k, the number of clusters, is not known, we proceed
as follows: first we take k=2, then k=3, and so on. At each
stage we find "the best sum of squares split" of the den-
drite, for which we calculate not only the (minimum) WGSS,

but also the (maximum) BGSS and the variance ratio criterion

VRC = 2388 , WGBS | (2)

We suggest the application of (2) as an informal indica-
tor for the "best number" of groups. It is evident that this
criterion is analogous to the F-statistic in univariate ana-
lysis. In fact it has already been used by Edwards and
gavalli-Sforza (1965, p. 374) as an F-test in a multivariate
cluster analysis.

Though there is no satisfactory probabilistic theory to
justify the use of VRC (2), the criterion has some desirable

mathematical features that are encouraging. If d2 denotes the

general mean of all n(n-1)/2 squared distances dij, and dé

that of the ng(ng-1)/2 squared distances within the g-th
group (€ = 1y 25 essy k), then, from (1),

1SS = 3 (n-1)a2,

WasS = $((n,=1)8 4 (0=1)82¢ vus + (0,~1)32)
and -

BGSS = %((k-’l)da + (n-k) 4,),
where

A, = —((n.- TE_q2 T = =
k= EE((Rg=1(a%-a7) + (0y-1)(a%-a2) + ... + (nk"“)(de‘df{))

1S a welghted mean of the differences between the general

and t ithin~-
he within group mean squared distances. Now we may write

BGSS iGSS - -
VRC = &Z22 , _«luos 2, n=k
o7 /e = (0% BE A/ a).

10
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It is evident that in the special case of equal distances be-
tween all psirs of points Ak becomes zero and VRC is one.
Otherwise the minimum WGSS criterion maximizes 4y for a given
k. As an average, the function 4, may also be used to com=-

e

pare partitions obtained for different numbers of groups: the

dirference Ay - 4y _, will indicate an average gain in the
within-group compactness resulting from the change from k - 1
to Kk iroups. Hence, the behaviour of Ak as a function of k
may be sensitive to the existence of groups. To see this in

connection with the VRC it is instructive to write
n-~K

BGSS , WGSS
p=~ SRR~ LORACEEWE (3)
where a, = 4, / 52
k = 4 .

,,,,,

(3), we have a, between O and 1,with a, = O for equal dis-
tances between all pairs of points and with a, = 1 for an
"ideal" clustering, i.e¢. for no variation within groups. (If
all points are different this is not obtained earlier than at
the iinal stage of k = n.) If the points are uniformly dis-
triouted in space, ay will increase slowly and more or less
steadily with the rising value of k. 4nd from (%), the VRC
will tend to decrease when k increases and ay is constant,
this being more or less counterbalanced by the increase in
ay. Anyway, a uniform distribution of points in space will be
usually reflected by a smooth run of values of the VRC. On
the other hand, if the points are grouped into ko natural

clusters, with a small within-cluster variation, the change

from ko -1 to ko will cause a considerable increase in 8

11
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and so a rapid rise of the VRC, possibly forming a hump. More
precisely, the increase in the number of groups from ko -1
to k, will cause an increase of the VRC if akolako_1 exceeds
the ratio (k~ - 1)/(a + k. - 2) which is never smaller

0] ko—ﬂ 0

than one.

It follows from the discussion above that the computa-
tion of VRC for k = 2, 3, ... may be helpful in deciding on
the "best number" of groups. We suggest choosing that number
k for which the VRC has an absolute or local maximum, or at
least has a comparatively rapid increase, If there are sever-
al such local maxima, it will be most economical to choose
the smalliest of the related values of k., this in zact means
that the computation can be stopped when the first local max-~
imum is reached. The process may then be repeated for each of
the resulting groups separately, and so on., This further sug-
gests that the dichotomous grouping of Fdwards and Cavalli-
Sforza (1965) is advisable when the first values of VRC form
a monotonic decreasing sequence., Also it seems that when the
values of VRC are increasing monotonically throughout the
range of k, then no reasonably better partition of the points
exists than that into individuals.

3. THE COMPUTER PROGRAMS

Several computer programs are available for the dendrite
method. Our own programs are written in Most I for Odra 1013,
in Mat IV for Minsk 22 and in Algol for Odra 1204. Fortran
programs have been written by Wishart (1970) - a Fortran II
program for IBM 1620 and a Fortran IV program for IBM 360.
They are included in the CLUSTAN IA suite of Fortran programs

12
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for cluster analysis and other multivariate procedures, dis-
tributed by the St. Andrews University Computer Laboratory,
Scotland.

The programs compute and print the shortest dendrite and
then divide it into 2, 3, «.., D~ clusters on the minimum

WGSS basis. A minimum and a maximum for cluster numbers that

are of interest may be specified, to limit the computations.
This option is important, since for n greater than 20 the
execution of all optimal division from k = 2 to k = n -~ 1
may require considerable computing time. Several grouping
criteria are computed and printed, including the suggested
VRC which helps to decide on the "best number'" of clusters
within the specified range.

The programs are restricted to n not greater than 140.

4, EXAMPLES

The main purpose of presenting the following examples is
to compare the dendrite method with the sequential methods of
Ward (1965) and of Edwards and Cavalli-Sforza (1965). It is
also hoped that the examples will make more explicit the idea
of linking points into dendrites for a cluster analysis.

4,1, Bacteriological Data

The data of this example consist of a number of scores
observed for six species of bacteria and are taken from
Edwards and Cavalli-Sforza (1965). Table I gives the ( g )
squared distances between the six species in an ordinary Eu-
clidean space. The shortest dendrite constructed on the basis
. of these distances is shown in Figure 1. It may be obtained

in the following way: We start by choosing the shortest dis-

13
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tance between the points (species),i.e. the distance between
A and B, It forms the first edge of the dendrite, A-B. Then
the shortest edge which connects to A-B is added, i.e. B-D.
Now the dendrite consists of two edges, A-B-D. It is then ex-
tended by adding the shortest of the remaining edges which
connects to at least one edge of the present dendrite without
forming a circuit, i.e. D-C. The dendrite is now of the form
TABLE I

The Half-Matrix of Squared Distances for
the Bacteriological Data

A B ¢ D E F Points
5 11 1M 14 14 " A
10 6 13 15 B
6 17 21 c
13 15 D
6 E
F

2,24
8
3_6}//0
-
2,45 - 2. 45
~©
2,45
©
FIG. 1

The shortest dendrite for the bacteriological data.
1k
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A-B-D=C, Following the same rule of extension, the edge B-E
or D=E is to be added, since both are of equal length and
shorter than any other to be considered. These two possibili-
ties are indicated in Figure 41 by two alternative broken
lines. Therefore, the graph drawn in Figure 1 should be in-
terpreted as giving two alternative shortest dendrites with
either the edge B-E or D~E, The dendrite is completed by ad-
ding E-F, the shortest edge which connects the remaining
point F. The lengths of the edges, that refer to the distan-
ces between the connected points, are also given in Figure 1.

The resulting shortest dendrite (MST) will now be split
into most compact groups of points. This may be done in the
same way as in Edwards and Cavalli-Sforza (1965), except that
only those partitions are examined which emerge atter remo-
ving one edge from the dendrite at each stage of the subdi-
vision. This leads to exactly the same splits as those ob-
tained by Edwards and Cavalli-Sforza (1965), who examined all
possible ways of subdividing the points into two clusters atb
a given stage of the sequential procedure. The partition into
clusters of ABCD and EF results from the removal of the edge
E-B or E~D (depending on which one is included in the den-
drite), after examining only 5 out of the 31 possible splits.
Further subdivision into clusters of AB and CD is achieved Dby
trying only 3 out of the 7 possible splits.

But the clustering needs not to be restricted to the di-
chotomous subdivision of the set of points. If so desired, we
may split the dendrite into a "given number" of groups or de-

cide on the "best number" of groups by examining the behav-

15
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iour of the VRC (as described in section 2).

The division into k = 2 groups has already been dis-
cussed, che best split is ABCD: FF., The division into k = 3
groups results from removing 2 edges from the dendrite. 4p-
plying the minimum JGSS criterion, AB: CD: EF is obtained as
the best split, To receive the partition into k = 4 groups
we remove 7 edges, obtaining in this case two possible best
splits, AB: C: D: EF or AB: CD: E: F, Finally, for k = 5 we
obtain as the best split AB: C: D: E: F., It has been found
that when exanmining all possible splits into X = 2, 3, 4 and
5 groups with the minimum iGSS criterion the results are ex-
actly the seme ag those just presented, Table IT sunmarizes
the grouping criteria of the resulting splits. It reveals
some hierarchical structure of the data. This conclusion is
dravn from the VRC given in the last row, It suggests that
the best splitis obtained with two groups,which in this case
is directly cvident in the distance table (Table I): T and F
are far apart from the rest of the points., This also explains
the agreement between the results of the dendrite method and
those obtained by Edwards and Cavalli-Sforza (1965). The full
agreemant of the results of all three compared methods and
the exact global method may be explained by the apparent good

separation of the hierarchically-built clusters.
4,2. Anthropometric Data

In this example we reexamine the anthropometric data o-
riginally analyzed by Rao (1952) and used as an example also
by Edwards and Cavalli-Sforza (1965). Here the distances be-

tween points which represent sample means of nine anthropo-

16
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TABLE II

Criteria for the Cluster Analysis of the Bacteriological Data

Number o groups 2 3 4 5
Number of possible splits:

total 21 30 65 15

in dendrite method 5 10 10 5
Max BGSs? 14,25 21.0 24,0 27.0
Min WGss® 15.25 8.5 5.5 2.5

n-k Max BGSS

'VRC = m.m 5-74 5.70 2091 2070

8 The same for Ward method, Edwards and Cavalli-Sforza
method, dendrite method and the exact global method.

metric characters for twelve Indian caétes and tribes are de-
fined by Mahalanobis generalized distance. They are given in
Table IV of Edwards and Cavalli-sSforza (1965). The shortest
dendrite based on the distances is given in Figure 2, in two
different versions. The dendrite (a) on the left has been
drawn in the usual way, with the length of its edges propor-
tional to Mahalanobis D. The dendrite (b) on the right has
been drawn in a plane with the first two principal components
as coordinate axes (as found by Rao, 1952, chapter 9c). This
presentation slightly distorts the lengths of the edges. Real
values of D are given in both of the insomorphic dendrites.
Without any a priori decision on the number of clusters,
we have performed the whole sequence of calculations descri-
bed in section 2. Some of the grouping criteria are given
in Table III. One interesting point is the reduction of the

number of partitions to be examined by the minimum WGSS cri-

17
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FIG. 2

The shortest dendrite for the anthropometric data drawn (a)
in the usual way and (b) in the chart of the first two prin-
cipal components {(canonical variates).
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terion. Another striking point is the pattern of the sequence
of values obtained for the VRC: it has a greater value for k
= 5 than for kX = 4 or 6. This is the only disturbance in the
monotonic increase of this criterion for rising values of k.
Following the suggestion given at the end of section 2, we
should then take k = 5 as the "best number" of groups of
points into which to split the shortest dendrite. The WGSS
splitting of the shortest dendrite of the anthropometric data
leads to the following five clusters: (I) Ahir, Kurmi, Other
Artisan, Kahars (II) Chattri, Muslim; (III) Dom, Bhil; (IV)
Basti Brahmin, Other Brahmin; (V) Bhatu, Habru. This cluster-
ing is exactly the same as that obtained by Rao (1952), who
arrived at it largely by intuition supported by an average
distance criterion. The same result has also been obtained by
the method of Ward (1963).

A different grouping of these data was found by Edwards
and Cavalli-Sforza (1965), who used the minimum WGSS criteri-
on in a dichotomous subdivision of the set of points. But
since the values of the VRC, as given in Table III, form an
almost consistently increasing sequence, there is no reason
to assume a hierarchical structure of the points. Therefore,
a method which sequentially divides the set into two groups
at each stage of the procedure is here unjustified. As the
result of such inappropriate grouping the Ahir have been
clustered with the Brahmin, though the former are evidently
nearer to the Kurmi. Edwards and Cavalli-Storza (4965) are a-
ware of this difficulty but consider unfeasible the examina-

tion of all possible splits into more than two groups. The
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TABLE ITI

Criteria for the Cluster Analysis of the Anthropometric Data

Number of groups 2 3 4 5 6 7 8 9
Number of possible

splits:

2047 611501 1323652

total 86526 1379400

in dendrite method 11 55 165 330 462 462 330 165
Min WGSS:

in Ward method 187.12 132.12 83.33 46.25 33.75 22.75 12.17 7.50

in Edwards and Ca- .35 £9 126.60 83.70 48.50 36.00 24.50 13.50 7.50

valli-Sforza method

in dendrite method 180.69 126.60 80.63 46.25 33.75 22.75 12.17 7.50
VRC in dendrite method 3.87 4.41 5.62 7.74 7.71 8435 11.20 12.16

10

1705

55

3.50
3.50
3+50
15.69

11

66
11

1.00
1.00
1.00
24,97
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considerable reduction of the number of possible ways gained
by the dendrite method removes this difficulty and avoids di-~
chotomous clustering not justitied by data. The rull agree-
ment of the proposed method with the result of Rao (1952)
supports the suggested VRC of the '""best number" of groups.
Furthermore, judging from the values of the minimum WGSS cri-
terion given in Table III for all three compared methods, the
dendrite method has appeared superior to the method ot Ward
(1263) for k = 2, 3 and 4, and superior to that of Edwards
and Cavalli-Sforza (4965) for k = 4, 5, 6, 7 and 8. In no
case has the dendrite method been inferior to any of the se-

quential methods.

4.3, Plant Breeding-Data

The data analyzed in this subsection (collected by Dr Z.
Ktoczowski of the Institute of Plant Breeding and Acclimati-
zation, Poznaﬁ) consist of 4 measurements on 30 flowers from
each of 7 strains of sunflower.Table IV gives the lMahalanobis
distances (Dg) between the strains computed for all measure-
ments. At the bottom of the table the smallest significant
squared distances at the 5% and 1% levels are given. They are
computed from Hotelling’s Tz-distribution. The shortest Qen-

drite based on Table IV is given in Figure 3. The numbers of

possible splits together with the calculated cri'eria are
presented in Table V. The VRC suggests a split into r = §
groups. The splitting of the dendrite that minimizes WGSS
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TABLE IV

The Half-lMatrix of Squared Mahalnobis Distances
for the Plant Breeding Data

A B C D E F G Points
142 0.36 1.93 1.23 3.57 5.52 A
1.25 4,49 1410 2.40 4.04 B
1.23 1412 2.596 4,93 C
3496 4.45 6,66 D
1.90 3.13 E
0.31 F
G
2 2
DO.05 = 0.66 DO.O1 = 0,92
20 ¢ -
w 1.5}
Z
S
&
210 |-
8
s
105 —
100
i _/\ | | i | | ]
JL‘ B0 135 o 1] ﬁo 155 6o

FIRST COMPONENT

FIG, 3
The sho: ;¢st dendrite for the plant breeding data.
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TABLE V

Criteria for the Cluster Analysis of the Plant Breeding Data

Number of groups 2 3 4 5 6
Number oi possible

splits:

total 63 301 350 140 21

in dendrite method 6 15 20 15 6
Max BGss? 4,49 6,49 7.38 7.93 8,11
Min wGss® 3,77 1.78 0.89 0.34 0,16

-k BGSS

VRC = %:W‘WG§§ 5.95 7431 8.34  11.84 10,47

8Phe same for Ward method, Edwards and Cavalli-Sforza
method, dendrite method and the exact global method.

(= Os34) is D: AC: B: E: FG. We notice that the two pairs of
strains that have not been separated in the split are the on-
ly ones that are not significantly different (cf. Table IV).
It is also evident from TableIV that no other division of the
seven strains into five clusters could give a smaller WGSS
than the one based on the shortest dendrite. In fact it has
been found that all three cémpared methods give here the same
results, which are in complete agreement with the results ob-
tained from evamining all possible splits.

Finally, it may be interesting to compare the sequences
of values of the VRC (2) calculated for the three examples
under consideration, They are given in the charts of Figure
4, The criterion for the bacteriological data (a) results in
a decreasing sequence thus suggesting a possible hieraréhical
structure of the points. The sequence for anthropometric da-
ta (b) is increasing, except for a hump at k = 5. This sug-

gests that the clusters are not well separated and if there

23




CALINSKI AND HARABASZ

(b
28
o fo]
24 2 o
20 0 o
(a)
-]
4r- 6 o 8r
= ° o o
=4
o
el o 12 ° 6 o
@ o o
()
o
52- 8- o o ° ar
[+
" o
w o =
gl— 4 o 2
o
g
N I | I N N NN NN NN N RO B | T R N B
2 3 4°5 2 3 4 5 6 7 8 9 01 2 3 4 5 6
NUM B ER oF CLUSTERS

FIG. 4

The behaviour of the variance ratio criterion for the (a) bac-
teriological, (b) anthropometric and (c) plant breeding data.

are any clusters the most likely number of them is five. The
behaviour of the criterion is particularly evident in the
sunflower case (c), suggesting the clustering into 5 groups.
These examples do not exhaust all possible performances
of the VRC, and we are aware that in some cases the decision
on the "best number" of groups based on VRC may be vague. But
the cases we have investigated show that this criterion gives
some instructive insight into the structure of points. To
make the application of the criterion more precise, further
studies on the geometrical distributions of points in Eucli-

dean spaces would be necessary.
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5. CONCLUSION
Data consisting of v measurements on each of n objects
(individuals or samples) may meaningfully be subjected to
cluster analysis if a measure of pairwise distance between
objects is well defined. The objects may then be thought of
as points in a Euclidean space and the compactness of clus-

ters of them may be measured by the sums of the squared dis-
tances of the points from the centroids of the clusters. The

minimum of the WGSS becomes then an appropriate criterion for
cluster analysis., The enormous number of possible ways of di-
viding the set of n points into k groups can effectively be
reduced by constructing and splitting the shortest dendrite,
This dendrite method appears to be a suitable and satisfacto-
ry approximate procedure. The "best number" of groups, k, can
often be determined by the VRC, which also gives same insight
into the spatial structure of the points, which need not ne-
cessarily be hierarchical. The proposed method does not im-
pose any such structure on the resulting clusters. In this
sense it is more widely applicable than many other methods of
cluster analysis. Particularly, it seems to be superior to
the sequential procedures of Ward (1963) and Edwards and
Cavalli-Sforza (1965), or at least advisable as a method com-
plementary to them. Performing and comparing all the three
procedures it is always possible to decide on that grouping
which gives the lowest WGSS.
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